[Resource Topic] 2019/176: Homomorphic Encryption for Finite Automata

Welcome to the resource topic for 2019/176

Title:
Homomorphic Encryption for Finite Automata

Authors: Nicholas Genise, Craig Gentry, Shai Halevi, Baiyu Li, Daniele Micciancio

Abstract:

We describe a somewhat homomorphic GSW-like encryption scheme, natively encrypting matrices rather than just single elements. This scheme offers much better performance than existing homomorphic encryption schemes for evaluating encrypted (nondeterministic) finite automata (NFAs). Differently from GSW, we do not know how to reduce the security of this scheme to LWE, instead we reduce it to a stronger assumption, that can be thought of as an inhomogeneous variant of the NTRU assumption. This assumption (that we term iNTRU) may be useful and interesting in its own right, and we examine a few of its properties. We also examine methods to encode regular expressions as NFAs, and in particular explore a new optimization problem, motivated by our application to encrypted NFA evaluation. In this problem, we seek to minimize the number of states in an NFA for a given expression, subject to the constraint on the ambiguity of the NFA.

ePrint: https://eprint.iacr.org/2019/176

See all topics related to this paper.

Feel free to post resources that are related to this paper below.

Example resources include: implementations, explanation materials, talks, slides, links to previous discussions on other websites.

For more information, see the rules for Resource Topics .