[Resource Topic] 2019/1394: Voltage-based Covert Channels using FPGAs

Welcome to the resource topic for 2019/1394

Title:
Voltage-based Covert Channels using FPGAs

Authors: Dennis R. E. Gnad, Cong Dang Khoa Nguyen, Syed Hashim Gillani, Mehdi B. Tahoori

Abstract:

FPGAs are increasingly used in cloud applications and being integrated into Systems-on-Chip (SoCs). For these systems, various side-channel attacks on cryptographic implementations have been reported, motivating to apply proper countermeasures. Beyond cryptographic implementations, maliciously introduced covert channel receivers and transmitters can allow to exfiltrate other secret information from the FPGA. In this paper, we present a fast covert channel on FPGAs, which exploits the on-chip power distribution network. This can be achieved without any logical connection between the transmitter and receiver blocks. Compared to a recently published covert channel with an estimated 4.8 Mbit/s transmission speed, we show 8 Mbit/s transmission and reduced errors from around 3% to less than 0.003%. Furthermore, we demonstrate proper transmissions of word-size messages and test the channel in the presence of noise generated from other residing tenants’ modules in the FPGA. When we place and operate other co-tenant modules that require 85% of the total FPGA area, the error rate increases to 0.02%, depending on the platform and setup. This error rate is still reasonably low for a covert channel. Overall, the transmitter and receiver work with less than 3-5% FPGA LUT resources together. We also show the feasibility of other types of covert channel transmitters, in the form of synchronous circuits within the FPGA.

ePrint: https://eprint.iacr.org/2019/1394

See all topics related to this paper.

Feel free to post resources that are related to this paper below.

Example resources include: implementations, explanation materials, talks, slides, links to previous discussions on other websites.

For more information, see the rules for Resource Topics .