Welcome to the resource topic for 2019/1329
Title:
Drinfeld modules may not be for isogeny based cryptography
Authors: Antoine Joux, Anand Kumar Narayanan
Abstract:Elliptic curves play a prominent role in cryptography. For instance, the hardness of the elliptic curve discrete logarithm problem is a foundational assumption in public key cryptography. Drinfeld modules are positive characteristic function field analogues of elliptic curves. It is natural to ponder the existence/security of Drinfeld module analogues of elliptic curve cryptosystems. But the Drinfeld module discrete logarithm problem is easy even on a classical computer. Beyond discrete logarithms, elliptic curve isogeny based cryptosystems have have emerged as candidates for post-quantum cryptography, including supersingular isogeny Diffie-Hellman (SIDH) and commutative supersingular isogeny Diffie-Hellman (CSIDH) protocols. We formulate Drinfeld module analogues of these elliptic curve isogeny based cryptosystems and devise classical polynomial time algorithms to break these Drinfeld analogues catastrophically.
ePrint: https://eprint.iacr.org/2019/1329
See all topics related to this paper.
Feel free to post resources that are related to this paper below.
Example resources include: implementations, explanation materials, talks, slides, links to previous discussions on other websites.
For more information, see the rules for Resource Topics .