[Resource Topic] 2019/1299: A constant-rate non-malleable code in the split-state model

Welcome to the resource topic for 2019/1299

A constant-rate non-malleable code in the split-state model.

Authors: Divesh Aggarwal, Maciej Obremski


Non-malleable codes, introduced by Dziembowski, Pietrzak and Wichs in ICS 2010, have emerged in the last few years as a fundamental object at the intersection of cryptography and coding theory. Non-malleable codes provide a useful message integrity guarantee in situations where traditional error-correction (and even error-detection) is impossible; for example, when the attacker can completely overwrite the encoded message. Informally, a code is non-malleable if the message contained in a modified codeword is either the original message, or a completely "unrelated value’'. The family which received the most attention is the family of tampering functions in the so called (2-part) split-state model: here the message x is encoded into two shares L and R, and the attacker is allowed to arbitrarily tamper with each L and R individually. In this work, we give a constant rate non-malleable code from the tampering family containing so called 2-lookahead functions and forgetful functions, and combined with the work of Dodis, Kazana and the authors from STOC 2015, this gives the first constant rate non-malleable code in the split-state model with negligible error.

ePrint: https://eprint.iacr.org/2019/1299

See all topics related to this paper.

Feel free to post resources that are related to this paper below.

Example resources include: implementations, explanation materials, talks, slides, links to previous discussions on other websites.

For more information, see the rules for Resource Topics .