[Resource Topic] 2019/1230: Linear-Size Constant-Query IOPs for Delegating Computation

Welcome to the resource topic for 2019/1230

Title:
Linear-Size Constant-Query IOPs for Delegating Computation

Authors: Eli Ben-Sasson, Alessandro Chiesa, Lior Goldberg, Tom Gur, Michael Riabzev, Nicholas Spooner

Abstract:

We study the problem of delegating computations via interactive proofs that can be probabilistically checked. Known as interactive oracle proofs (IOPs), these proofs extend probabilistically checkable proofs (PCPs) to multi-round protocols, and have received much attention due to their application to constructing cryptographic proofs (such as succinct non-interactive arguments). We prove that a rich class of NEXP-complete problems, which includes machine computations over large fields and succinctly-described arithmetic circuits, has constant-query IOPs with O(T)-size proofs and polylog(T)-time verification for T-size computations. This is the first construction that simultaneously achieves linear-size proofs and fast verification, regardless of query complexity. An important metric when using IOPs to delegate computations is the cost of producing the proof. The highly-optimized proof length in our construction enables a very efficient prover, with arithmetic complexity O(T log T). Hence this construction is also the first to simultaneously achieve prover complexity O(T log T) and verifier complexity polylog(T).

ePrint: https://eprint.iacr.org/2019/1230

See all topics related to this paper.

Feel free to post resources that are related to this paper below.

Example resources include: implementations, explanation materials, talks, slides, links to previous discussions on other websites.

For more information, see the rules for Resource Topics .