[Resource Topic] 2019/1195: Non-Malleable Commitments Using Goldreich-Levin List Decoding

Welcome to the resource topic for 2019/1195

Title:
Non-Malleable Commitments Using Goldreich-Levin List Decoding

Authors: Vipul Goyal, Silas Richelson

Abstract:

We give the first construction of three-round non-malleable commitments from the almost minimal assumption of injective one-way functions. Combined with the lower bound of Pass (TCC 2013), our result is almost the best possible w.r.t. standard polynomial-time hardness assumptions (at least w.r.t. black-box reductions). Our results rely on a novel technique which we call bidirectional Goldreich-Levin extraction. Along the way, we also obtain the first rewind secure delayed-input witness indistinguishable (WI) proofs from only injective one-way functions. We also obtain the first construction of a distributionally extractable commitment scheme from injective one-way functions. We believe both of these to be of independent interest. In particular, as a direct corollary of our rewind secure WI construction, we are able to obtain a construction of 3-round promise zero-knowledge from only injective one-way functions.

ePrint: https://eprint.iacr.org/2019/1195

See all topics related to this paper.

Feel free to post resources that are related to this paper below.

Example resources include: implementations, explanation materials, talks, slides, links to previous discussions on other websites.

For more information, see the rules for Resource Topics .