[Resource Topic] 2019/1126: Encrypted Distributed Hash Tables

Welcome to the resource topic for 2019/1126

Title:
Encrypted Distributed Hash Tables

Authors: Archita Agarwal, Seny Kamara

Abstract:

Distributed hash tables (DHT) are a fundamental building block in the design of distributed systems with applications ranging from content distribution networks to off-chain storage networks for blockchains and smart contracts. When DHTs are used to store sensitive information, system designers use end-to-end encryption in order to guarantee the confidentiality of their data. A prominent example is Ethereum’s off-chain network Swarm. In this work, we initiate the study of end-to-end encryption in DHTs and the many systems they support. We introduce the notion of an encrypted DHT and provide simulation-based security definitions that capture the security properties one would desire from such a system. Using our definitions, we then analyze the security of a standard approach to storing encrypted data in DHTs. Interestingly, we show that this “standard scheme” leaks information probabilistically, where the probability is a function of how well the underlying DHT load balances its data. We also show that, in order to be securely used with the standard scheme, a DHT needs to satisfy a form of equivocation with respect to its overlay. To show that these properties are indeed achievable in practice, we study the balancing properties of the Chord DHT—arguably the most influential DHT—and show that it is equivocable with respect to its overlay in the random oracle model. Finally, we consider the problem of encrypted DHTs in the context of transient networks, where nodes are allowed to leave and join.

ePrint: https://eprint.iacr.org/2019/1126

See all topics related to this paper.

Feel free to post resources that are related to this paper below.

Example resources include: implementations, explanation materials, talks, slides, links to previous discussions on other websites.

For more information, see the rules for Resource Topics .