Welcome to the resource topic for 2019/1037
Title:
Card-based Cryptography Meets Formal Verification
Authors: Alexander Koch, Michael Schrempp, Michael Kirsten
Abstract:Card-based cryptography provides simple and practicable protocols for performing secure multi-party computation (MPC) with just a deck of cards. For the sake of simplicity, this is often done using cards with only two symbols, e.g., clubs and hearts. Within this paper, we target the setting where all cards carry distinct symbols, catering for use-cases with commonly available standard decks and a weaker indistinguishability assumption. As of yet, the literature provides for only three protocols and no proofs for non-trivial lower bounds on the number of cards. As such complex proofs (handling very large combinatorial state spaces) tend to be involved and error-prone, we propose using formal verification for finding protocols and proving lower bounds. In this paper, we employ the technique of software bounded model checking (SBMC), which reduces the problem to a bounded state space, which is automatically searched exhaustively using a SAT solver as a backend. Our contribution is twofold: (a) We identify two protocols for converting between different bit encodings with overlapping bases, and then show them to be card-minimal. This completes the picture of tight lower bounds on the number of cards with respect to runtime behavior and shuffle properties of conversion protocols. For computing AND, we show that there is no protocol with finite runtime using four cards with distinguishable symbols and fixed output encoding, and give a four-card protocol with an expected finite runtime using only random cuts. (b) We provide a general translation of proofs for lower bounds to a bounded model checking framework for automatically finding card- and length-minimal protocols and to give additional confidence in lower bounds. We apply this to validate our method and, as an example, confirm our new AND protocol to have a shortest run for protocols using this number of cards.
ePrint: https://eprint.iacr.org/2019/1037
See all topics related to this paper.
Feel free to post resources that are related to this paper below.
Example resources include: implementations, explanation materials, talks, slides, links to previous discussions on other websites.
For more information, see the rules for Resource Topics .