[Resource Topic] 2019/079: New Results about the Boomerang Uniformity of Permutation Polynomials

Welcome to the resource topic for 2019/079

Title:
New Results about the Boomerang Uniformity of Permutation Polynomials

Authors: Kangquan Li, Longjiang Qu, Bing Sun, Chao Li

Abstract:

In EUROCRYPT 2018, Cid et al. introduced a new concept on the cryptographic property of S-boxes: Boomerang Connectivity Table (BCT for short) for evaluating the subtleties of boomerang-style attacks. Very recently, BCT and the boomerang uniformity, the maximum value in BCT, were further studied by Boura and Canteaut. Aiming at providing new insights, we show some new results about BCT and the boomerang uniformity of permutations in terms of theory and experiment in this paper. Firstly, we present an equivalent technique to compute BCT and the boomerang uniformity, which seems to be much simpler than the original definition. Secondly, thanks to Carlet’s idea, we give a characterization of functions f from \mathbb{F}_{2}^n to itself with boomerang uniformity \delta_{f} by means of the Walsh transform. Thirdly, by our method, we consider boomerang uniformities of some specific permutations, mainly the ones with low differential uniformity. Finally, we obtain another class of 4-uniform BCT permutation polynomials over \mathbb{F}_{2^n}, which is the first binomial.

ePrint: https://eprint.iacr.org/2019/079

See all topics related to this paper.

Feel free to post resources that are related to this paper below.

Example resources include: implementations, explanation materials, talks, slides, links to previous discussions on other websites.

For more information, see the rules for Resource Topics .