[Resource Topic] 2019/074: Efficient and Secure Multiparty Computation from Fixed-Key Block Ciphers

Welcome to the resource topic for 2019/074

Title:
Efficient and Secure Multiparty Computation from Fixed-Key Block Ciphers

Authors: Chun Guo, Jonathan Katz, Xiao Wang, Yu Yu

Abstract:

Many implementations of secure computation use fixed-key AES (modeled as a random permutation); this results in substantial performance benefits due to existing hardware support for~AES and the ability to avoid recomputing the AES key schedule. Surveying these implementations, however, we find that most utilize AES in a heuristic fashion; in the best case this leaves a gap in the security proof, but in many cases we show it allows for explicit attacks. Motivated by this unsatisfactory state of affairs, we initiate a comprehensive study of how to use fixed-key block ciphers for secure computation—in particular for OT extension and circuit garbling—efficiently and securely. Specifically: - We consider several notions of pseudorandomness for hash functions (e.g., correlation robustness), and show provably secure schemes for OT extension, garbling, and other applications based on hash functions satisfying these notions. - We provide provably secure constructions, in the random-permutation model, of hash functions satisfying the different notions of pseudorandomness we consider. Taken together, our results provide end-to-end security proofs for implementations of secure-computation protocols based on fixed-key block ciphers (modeled as random permutations). Perhaps surprisingly, at the same time our work also results in noticeable performance improvements over the state-of-the-art.

ePrint: https://eprint.iacr.org/2019/074

See all topics related to this paper.

Feel free to post resources that are related to this paper below.

Example resources include: implementations, explanation materials, talks, slides, links to previous discussions on other websites.

For more information, see the rules for Resource Topics .