[Resource Topic] 2018/687: Assessing the Feasibility of Single Trace Power Analysis of Frodo

Welcome to the resource topic for 2018/687

Assessing the Feasibility of Single Trace Power Analysis of Frodo

Authors: Joppe W. Bos, Simon Friedberger, Marco Martinoli, Elisabeth Oswald, Martijn Stam


Lattice-based schemes are among the most promising post-quantum schemes, yet the effect of both parameter and implementation choices on their side-channel resilience is still poorly understood. Aysu et al. (HOST’18) recently investigated single-trace attacks against the core lattice operation, namely multiplication between a public matrix and a “small” secret vector, in the context of a hardware implementation. We complement this work by considering single-trace attacks against software implementations of “ring-less” LWE-based constructions. Specifically, we target Frodo, one of the submissions to the standardisation process of NIST, when implemented on an (emulated) ARM Cortex M0 processor. We confirm Aysu et al.'s observation that a standard divide-and-conquer attack is insufficient and instead we resort to a sequential, extend-and-prune approach. In contrast to Aysu et al. we find that, in our setting where the power model is far from being as clear as theirs, both profiling and less aggressive pruning are needed to obtain reasonable key recovery rates for SNRs of practical relevance. Our work drives home the message that parameter selection for LWE schemes is a double-edged sword: the schemes that are deemed most secure against (black-box) lattice attacks can provide the least security when considering side-channels. Finally, we suggest some easy countermeasures that thwart standard extend-and-prune attacks.

ePrint: https://eprint.iacr.org/2018/687

See all topics related to this paper.

Feel free to post resources that are related to this paper below.

Example resources include: implementations, explanation materials, talks, slides, links to previous discussions on other websites.

For more information, see the rules for Resource Topics .