Welcome to the resource topic for 2018/679
Title:
DeepChain: Auditable and Privacy-Preserving Deep Learning with Blockchain-based Incentive
Authors: Jiasi Weng, Jian Weng, Jilian Zhang, Ming Li, Yue Zhang, Weiqi Luo
Abstract:Deep learning can achieve higher accuracy than traditional machine learning algorithms in a variety of machine learning tasks. Recently, privacy-preserving deep learning has drawn tremendous attention from information security community, in which neither training data nor the training model is expected to be exposed. Federated learning is a popular learning mechanism, where multiple parties upload local gradients to a server and the server updates model parameters with the collected gradients. However, there are many security problems neglected in federated learning, for example, the participants may behave incorrectly in gradient collecting or parameter updating, and the server may be malicious as well. In this paper, we present a distributed, secure, and fair deep learning framework named DeepChain to solve these problems. DeepChain provides a value-driven incentive mechanism based on Blockchain to force the participants to behave correctly. Meanwhile, DeepChain guarantees data privacy for each participant and provides auditability for the whole training process. We implement a DeepChain prototype and conduct experiments on a real dataset for different settings, and the results show that our DeepChain is promising.
ePrint: https://eprint.iacr.org/2018/679
See all topics related to this paper.
Feel free to post resources that are related to this paper below.
Example resources include: implementations, explanation materials, talks, slides, links to previous discussions on other websites.
For more information, see the rules for Resource Topics .