[Resource Topic] 2018/1076: Game Theoretic Notions of Fairness in Multi-Party Coin Toss

Welcome to the resource topic for 2018/1076

Title:
Game Theoretic Notions of Fairness in Multi-Party Coin Toss

Authors: Kai-Min Chung, Yue Guo, Wei-Kai Lin, Rafael Pass, Elaine Shi

Abstract:

Coin toss has been extensively studied in the cryptography literature, and the well-accepted notion of fairness (henceforth called strong fairness) requires that a corrupt coalition cannot cause non-negligible bias. It is well-understood that two-party coin toss is impossible if one of the parties can prematurely abort; further, this impossibility generalizes to multiple parties with a corrupt majority (even if the adversary is computationally bounded and fail-stop only). Interestingly, the original proposal of (two-party) coin toss protocols by Blum in fact considered a weaker notion of fairness: imagine that the (randomized) transcript of the coin toss protocol defines a winner among the two parties. Now Blum’s notion requires that a corrupt party cannot bias the outcome in its favor (but self-sacrificing bias is allowed). Blum showed that this weak notion is indeed attainable for two parties assuming the existence of one-way functions. In this paper, we ask a very natural question which, surprisingly, has been overlooked by the cryptography literature: can we achieve Blum’s weak fairness notion in multi-party coin toss? What is particularly interesting is whether this relaxation allows us to circumvent the corrupt majority impossibility that pertains to strong fairness. Even more surprisingly, in answering this question, we realize that it is not even understood how to define weak fairness for multi-party coin toss. We propose several natural notions drawing inspirations from game theory, all of which equate to Blum’s notion for the special case of two parties. We show, however, that for multiple parties, these notions vary in strength and lead to different feasibility and infeasibility results.

ePrint: https://eprint.iacr.org/2018/1076

See all topics related to this paper.

Feel free to post resources that are related to this paper below.

Example resources include: implementations, explanation materials, talks, slides, links to previous discussions on other websites.

For more information, see the rules for Resource Topics .