[Resource Topic] 2018/1044: Strongly Unforgeable Signatures Resilient to Polynomially Hard-to-Invert Leakage under Standard Assumptions

Welcome to the resource topic for 2018/1044

Title:
Strongly Unforgeable Signatures Resilient to Polynomially Hard-to-Invert Leakage under Standard Assumptions

Authors: Masahito Ishizaka, Kanta Matsuura

Abstract:

A signature scheme is said to be weakly unforgeable, if it is hard to forge a signature on a message not signed before. A signature scheme is said to be strongly unforgeable, if it is hard to forge a signature on any message. In some applications, the weak unforgeability is not enough and the strong unforgeability is required, e.g., the Canetti, Halevi and Katz transformation. Leakage-resilience is a property which guarantees that even if secret information such as the secret-key is partially leaked, the security is maintained. Some security models with leakage-resilience have been proposed. The hard-to-invert leakage model, a.k.a. auxiliary (input) leakage model, proposed by Dodis et al. at STOC’09 is especially meaningful one, since the leakage caused by a function which information-theoretically reveals the secret-key, e.g., one-way permutation, is considered. In this work, we propose a generic construction of digital signature strongly unforgeable and resilient to polynomially hard-to-invert leakage which can be instantiated under standard assumptions such as the decisional linear assumption. We emphasize that our instantiated signature is not only the first one resilient to polynomially hard-to-invert leakage under standard assumptions, but also the first one which is strongly unforgeable and has hard-to-invert leakage-resilience.

ePrint: https://eprint.iacr.org/2018/1044

See all topics related to this paper.

Feel free to post resources that are related to this paper below.

Example resources include: implementations, explanation materials, talks, slides, links to previous discussions on other websites.

For more information, see the rules for Resource Topics .