Welcome to the resource topic for 2017/995
Title:
A signature scheme from Learning with Truncation
Authors: Jeffrey Hoffstein, Jill Pipher, William Whyte, Zhenfei Zhang
Abstract:In this paper we revisit the modular lattice signature scheme and its efficient instantiation known as pqNTRUSign. First, we show that a modular lattice signature scheme can be based on a standard lattice problem. As the fundamental problem that needs to be solved by the signer or a potential forger is recovering a lattice vector with a restricted norm, given the least significant bits, we refer to this general class of problems as the “learning with truncation” problem. We show that by replacing the uniform sampling in pqNTRUSign with a bimodal Gaussian sampling, we can further reduce the size of a signature. As an example, we show that the size of the signature can be as low as 4608 bits for a security level of 128 bits. The most significant new contribution, enabled by this Gaussian sam- pling version of pqNTRUSign, is that we can now perform batch verifi- cation, which allows the verifier to check approximately 2000 signatures in a single verification process.
ePrint: https://eprint.iacr.org/2017/995
See all topics related to this paper.
Feel free to post resources that are related to this paper below.
Example resources include: implementations, explanation materials, talks, slides, links to previous discussions on other websites.
For more information, see the rules for Resource Topics .