[Resource Topic] 2017/942: On Secure Two-Party Computation in Three Rounds

Welcome to the resource topic for 2017/942

Title:
On Secure Two-Party Computation in Three Rounds

Authors: Prabhanjan Ananth, Abhishek Jain

Abstract:

We revisit the exact round complexity of secure two-party computation. While four rounds are known to be sufficient for securely computing general functions that provide output to one party [Katz-Ostrovsky, CRYPTO’04], Goldreich-Krawczyk [SIAM J. Computing’96] proved that three rounds are insufficient for this task w.r.t. black-box simulation. In this work, we study the feasibility of secure computation in three rounds using non-black-box simulation. Our main result is a three-round two-party computation protocol for general functions against adversaries with auxiliary inputs of bounded size. This result relies on a new two round input-extraction protocol based on succinct randomized encodings. We also provide a partial answer to the question of achieving security against non-uniform adversaries. Assuming sub-exponentially secure iO and one-way functions, we rule out three-round protocols that achieve polynomial simulation-based security against the output party and exponential indistinguishability-based security against the other party.

ePrint: https://eprint.iacr.org/2017/942

See all topics related to this paper.

Feel free to post resources that are related to this paper below.

Example resources include: implementations, explanation materials, talks, slides, links to previous discussions on other websites.

For more information, see the rules for Resource Topics .