Welcome to the resource topic for 2017/901
Title:
Stateful Multi-Client Verifiable Computation
Authors: Christian Cachin, Esha Ghosh, Dimitrios Papadopoulos, Björn Tackmann
Abstract:This paper develops a cryptographic protocol for outsourcing arbitrary stateful computation among multiple clients to an untrusted server, while guaranteeing integrity of the data. The clients communicate only with the server and store only a short authenticator to ensure that the server does not cheat. Our contribution is two-fold. First, we extend the recent hash&prove scheme of Fiore et al. (CCS 2016) to stateful computations that support arbitrary updates by the untrusted server, in a way that can be verified by the clients. We use this scheme to generically instantiate authenticated data types. Second, we describe a protocol for multi-client verifiable computation based on an authenticated data type, and prove that it achieves a computational version of fork linearizability. This is the strongest guarantee that can be achieved in the setting where clients do not communicate directly; it ensures correctness and consistency of outputs seen by the clients individually.
ePrint: https://eprint.iacr.org/2017/901
See all topics related to this paper.
Feel free to post resources that are related to this paper below.
Example resources include: implementations, explanation materials, talks, slides, links to previous discussions on other websites.
For more information, see the rules for Resource Topics .