Welcome to the resource topic for 2017/789
Title:
Low-communication parallel quantum multi-target preimage search
Authors: Gustavo Banegas, Daniel J. Bernstein
Abstract:The most important pre-quantum threat to AES-128 is the 1994 van Oorschot–Wiener “parallel rho method”, a low-communication parallel pre-quantum multi-target preimage-search algorithm. This algorithm uses a mesh of p small processors, each running for approximately 2^128/pt fast steps, to find one of t independent AES keys k_1,…,k_t, given the ciphertexts AES_{k_1}(0),…,AES_{k_t}(0) for a shared plaintext 0. NIST has claimed a high post-quantum security level for AES-128, starting from the following rationale: “Grover’s algorithm requires a long-running serial computation, which is difficult to implement in practice. In a realistic attack, one has to run many smaller instances of the algorithm in parallel, which makes the quantum speedup less dramatic.” NIST has also stated that resistance to multi-key attacks is desirable; but, in a realistic parallel setting, a straightforward multi-key application of Grover’s algorithm costs more than targeting one key at a time. This paper introduces a different quantum algorithm for multi-target preimage search. This algorithm shows, in the same realistic parallel setting, that quantum preimage search benefits asymptotically from having multiple targets. The new algorithm requires a revision of NIST’s AES-128, AES-192, and AES-256 security claims.
ePrint: https://eprint.iacr.org/2017/789
See all topics related to this paper.
Feel free to post resources that are related to this paper below.
Example resources include: implementations, explanation materials, talks, slides, links to previous discussions on other websites.
For more information, see the rules for Resource Topics .