[Resource Topic] 2017/756: Verifiable Private Polynomial Evaluation

Welcome to the resource topic for 2017/756

Title:
Verifiable Private Polynomial Evaluation

Authors: Xavier Bultel, Manik Lal Das, Hardik Gajera, David Gérault, Matthieu Giraud, Pascal Lafourcade

Abstract:

Delegating the computation of a polynomial to a server in a verifiable way is challenging. An even more challenging problem is ensuring that this polynomial remains hidden to clients who are able to query such a server. In this paper, we formally define the notion of \emph{Private Polynomial Evaluation} (PPE). Our main contribution is to design a rigorous security model along with relations between the different security properties. We define \emph{polynomial protection} (PP), \emph{proof unforgeability} (UNF), and \emph{indistinguishability against chosen function attack} (INDCFA), which formalizes the resistance of a PPE against attackers trying to guess which polynomial is used among two polynomials of their choice. As a second contribution, we give a cryptanalysis of two PPE schemes of the literature. Finally, we design a PPE scheme called PIPE and we prove that it is PP-, UNF- and INDCFA-secure under the decisional Diffie-Hellman assumption in the random oracle model.

ePrint: https://eprint.iacr.org/2017/756

See all topics related to this paper.

Feel free to post resources that are related to this paper below.

Example resources include: implementations, explanation materials, talks, slides, links to previous discussions on other websites.

For more information, see the rules for Resource Topics .