Welcome to the resource topic for 2017/709
Title:
spKEX: An optimized lattice-based key exchange
Authors: Sauvik Bhattacharya, Oscar Garcia-Morchon, Ronald Rietman, Ludo Tolhuizen
Abstract:The advent of large-scale quantum computers has resulted in significant interest in quantum-safe cryptographic primitives. Lattice-based cryptography is one of the most attractive post-quantum cryptographic families due to its well-understood security, efficient operation and versatility. However, LWE-based schemes are still relatively bulky and slow. In this work, we present spKEX, a forward-secret, post-quantum, unauthenticated lattice-based key-exchange scheme that combines four techniques to optimize performance. spKEX relies on Learning with Rounding (LWR) to reduce bandwidth; it uses sparse and ternary secrets to speed up computations and reduce failure probability; it applies an improved key reconciliation scheme to reduce bandwidth and failure probability; and computes the public matrix A by means of a permutation to improve performance while allowing for a fresh A in each key exchange. For a quantum security level of 128 bits, our scheme requires 30% lesser bandwidth than the LWE-based key-exchange proposal Frodo [9] and allows for a fast implementation of the key exchange.
ePrint: https://eprint.iacr.org/2017/709
See all topics related to this paper.
Feel free to post resources that are related to this paper below.
Example resources include: implementations, explanation materials, talks, slides, links to previous discussions on other websites.
For more information, see the rules for Resource Topics .