[Resource Topic] 2017/690: High Performance Post-Quantum Key Exchange on FPGAs

Welcome to the resource topic for 2017/690

High Performance Post-Quantum Key Exchange on FPGAs

Authors: Po-Chun Kuo, Wen-Ding Li, Yu-Wei Chen, Yuan-Che Hsu, Bo-Yuan Peng, Chen-Mou Cheng, Bo-Yin Yang


Lattice-based cryptography is a highly potential candidate that protects against the threat of quantum attack. At Usenix Security 2016, Alkim, Ducas, Pöpplemann, and Schwabe proposed a post-quantum key exchange scheme called NewHope, based on a variant of lattice problem, the ring-learning-with-errors (RLWE) problem. In this work, we propose a high performance hardware architecture for NewHope. Our implementation requires 6,680 slices, 9,412 FFs, 18,756 LUTs, 8 DSPs and 14 BRAMs on Xilinx Zynq-7000 equipped with 28mm Artix-7 7020 FPGA. In our hardware design of NewHope key exchange, the three phases of key exchange costs 51.9, 78.6 and 21.1 microseconds, respectively. It achieves more than 4.8 times better in terms of area-time product comparing to previous results of hardware implementation of NewHope-Simple from Oder and Güneysu at Latincrypt 2017.

ePrint: https://eprint.iacr.org/2017/690

See all topics related to this paper.

Feel free to post resources that are related to this paper below.

Example resources include: implementations, explanation materials, talks, slides, links to previous discussions on other websites.

For more information, see the rules for Resource Topics .