[Resource Topic] 2017/669: Speeding up Elliptic Curve Scalar Multiplication without Precomputation

Welcome to the resource topic for 2017/669

Title:
Speeding up Elliptic Curve Scalar Multiplication without Precomputation

Authors: Kwang Ho Kim, Junyop Choe, Song Yun Kim, Namsu Kim, Sekung Hong

Abstract:

This paper presents a series of Montgomery scalar multiplication algorithms on general short Weierstrass curves over odd characteristic fields, which need only 12 field multiplications plus 12 ~ 20 field additions per scalar bit using 8 ~ 10 field registers, thus significantly outperform the binary NAF method on average. Over binary fields, the Montgomery scalar multiplication algorithm which was presented at the first CHES workshop by LĀ“opez and Dahab has been a favorite of ECC implementors, due to its nice properties such as high efficiency outperforming the binary NAF, natural SPA-resistance, generality coping with all ordinary curves and implementation easiness. Over odd characteristic fields, the new scalar multiplication algorithms are the first ones featuring all these properties. Building-blocks of our contribution are new efficient differential addition-and-doubling formulae and a novel conception of on-the-fly adaptive coordinates which softly represent points occurring during a scalar multiplication not only in accordance with the basepoint but also bits of the given scalar. Importantly, the new algorithms are equipped with built-in countermeasures against known side-channel attacks, while it is shown that previous Montgomery ladder algorithms with the randomized addressing countermeasure fail to thwart attacks exploiting address-dependent leakage.

ePrint: https://eprint.iacr.org/2017/669

See all topics related to this paper.

Feel free to post resources that are related to this paper below.

Example resources include: implementations, explanation materials, talks, slides, links to previous discussions on other websites.

For more information, see the rules for Resource Topics .