[Resource Topic] 2017/608: Your Rails Cannot Hide From Localized EM: How Dual-Rail Logic Fails on FPGAs

Welcome to the resource topic for 2017/608

Your Rails Cannot Hide From Localized EM: How Dual-Rail Logic Fails on FPGAs

Authors: Vincent Immler, Robert Specht, Florian Unterstein


Protecting cryptographic implementations against side-channel attacks is a must to prevent leakage of processed secrets. As a cell-level countermeasure, so called DPA-resistant logic styles have been proposed to prevent a data-dependent power consumption. As most of the DPA-resistant logic is based on dual-rails, properly implementing them is a challenging task on FPGAs which is due to their fixed architecture and missing freedom in the design tools. While previous works show a significant security gain when using such logic on FPGAs, we demonstrate this only holds for power-analysis. In contrast, our attack using high-resolution electromagnetic analysis is able to exploit local characteristics of the placement and routing such that only a marginal security gain remains, therefore creating a severe threat. To further analyze the properties of both attack and implementation, we develop a custom placer to improve the default placement of the analyzed AES S-box. Different cost functions for the placement are tested and evaluated w.r.t. the resulting side-channel resistance on a Spartan-6 FPGA. As a result, we are able to more than double the resistance of the design compared to cases not benefiting from the custom placement.

ePrint: https://eprint.iacr.org/2017/608

See all topics related to this paper.

Feel free to post resources that are related to this paper below.

Example resources include: implementations, explanation materials, talks, slides, links to previous discussions on other websites.

For more information, see the rules for Resource Topics .