[Resource Topic] 2017/531: Template Attack vs Bayes Classifier

Welcome to the resource topic for 2017/531

Title:
Template Attack vs Bayes Classifier

Authors: Stjepan Picek, Annelie Heuser, Sylvain Guilley

Abstract:

Side-channel attacks represent one of the most powerful category of attacks on cryptographic devices with profiled attacks in a promi- nent place as the most powerful among them. Indeed, for instance, template attack is a well-known real-world attack that is also the most powerful attack from the information theoretic perspective. On the other hand, machine learning techniques have proven their quality in a numerous applications where one is definitely side-channel analysis. As one could expect, most of the research concerning supervised machine learning and side-channel analysis concentrated on more powerful machine learning techniques. Although valid from the practical perspective, such attacks often remain lacking from the more theoretical side. In this paper, we investigate several Bayes classifiers, which present simple supervised techniques that have significant similarities with the template attack. More specifically, our analysis aims to investigate what is the influence of the feature (in)dependence in datasets with different amount of noise and to offer further insight into the efficiency of machine learning for side-channel analysis.

ePrint: https://eprint.iacr.org/2017/531

See all topics related to this paper.

Feel free to post resources that are related to this paper below.

Example resources include: implementations, explanation materials, talks, slides, links to previous discussions on other websites.

For more information, see the rules for Resource Topics .