[Resource Topic] 2017/426: FHPKE based on multivariate discrete logarithm problem

Welcome to the resource topic for 2017/426

FHPKE based on multivariate discrete logarithm problem

Authors: Masahiro Yagisawa


Previously I proposed fully homomorphic public-key encryption (FHPKE) based on discrete logarithm problem which is vulnerable to quantum computer attacks. In this paper I propose FHPKE based on multivariate discrete logarithm assumption. This encryption scheme is thought to withstand to quantum computer attacks. Though I can construct this scheme over many non-commutative rings, I will adopt the FHPKE scheme based on the octonion ring as the typical example for showing how this scheme is constructed. The multivariate discrete logarithm problem (MDLP) is defined such that given f(x), g(x), h(x) and a prime q, final goal is to find m0, m1, n0, n1∈Fq* where h(x)=f ^m0(g^n0(x))+f ^m1(g^n1(x)) mod q over octonion ring.

ePrint: https://eprint.iacr.org/2017/426

See all topics related to this paper.

Feel free to post resources that are related to this paper below.

Example resources include: implementations, explanation materials, talks, slides, links to previous discussions on other websites.

For more information, see the rules for Resource Topics .