[Resource Topic] 2017/380: Watermarking Cryptographic Functionalities from Standard Lattice Assumptions

Welcome to the resource topic for 2017/380

Title:
Watermarking Cryptographic Functionalities from Standard Lattice Assumptions

Authors: Sam Kim, David J. Wu

Abstract:

A software watermarking scheme allows one to embed a “mark” into a program without significantly altering the behavior of the program. Moreover, it should be difficult to remove the watermark without destroying the functionality of the program. Recently, Cohen et al. (STOC 2016) and Boneh et al. (PKC 2017) showed how to watermark cryptographic functions such as PRFs using indistinguishability obfuscation. Notably, in their constructions, the watermark remains intact even against arbitrary removal strategies. A natural question is whether we can build watermarking schemes from standard assumptions that achieve this strong mark-unremovability property. We give the first construction of a watermarkable family of PRFs that satisfy this strong mark-unremovability property from standard lattice assumptions (namely, the learning with errors (LWE) and the one-dimensional short integer solution (SIS) problems). As part of our construction, we introduce a new cryptographic primitive called a translucent PRF. Next, we give a concrete construction of a translucent PRF family from standard lattice assumptions. Finally, we show that using our new lattice-based translucent PRFs, we obtain the first watermarkable family of PRFs with strong unremovability against arbitrary strategies from standard assumptions.

ePrint: https://eprint.iacr.org/2017/380

Talk: https://www.youtube.com/watch?v=dCwDK1gqVxQ

See all topics related to this paper.

Feel free to post resources that are related to this paper below.

Example resources include: implementations, explanation materials, talks, slides, links to previous discussions on other websites.

For more information, see the rules for Resource Topics .