Welcome to the resource topic for 2017/142
Title:
Computing generator in cyclotomic integer rings, A subfield algorithm for the Principal Ideal Problem in L(1/2) and application to cryptanalysis of a FHE scheme
Authors: Jean-François Biasse, Thomas Espitau, Pierre-Alain Fouque, Alexandre Gélin, Paul Kirchner
Abstract:The Principal Ideal Problem (resp. Short Principal Ideal Problem), shorten as PIP (resp. SPIP), consists in finding a generator (resp. short generator) of a principal ideal in the ring of integers of a number field. Several lattice-based cryptosystems rely on the presumed hardness of these two problems. In practice, most of them do not use an arbitrary number field but a power-of-two cyclotomic field. The Smart and Vercauteren fully homomorphic encryption scheme and the multilinear map of Garg, Gentry, and Halevi epitomize this common restriction. Recently, Cramer, Ducas, Peikert, and Regev showed that solving the SPIP in such cyclotomic rings boiled down to solving the PIP. In this paper, we present a heuristic algorithm that solves the PIP in prime-power cyclotomic fields in subexponential time L(1/2) in the discriminant of the number field. This is achieved by descending to its totally real subfield. The implementation of our algorithm allows to recover in practice the secret key of the Smart and Vercauteren scheme, for the smallest proposed parameters (in dimension 256).
ePrint: https://eprint.iacr.org/2017/142
See all topics related to this paper.
Feel free to post resources that are related to this paper below.
Example resources include: implementations, explanation materials, talks, slides, links to previous discussions on other websites.
For more information, see the rules for Resource Topics .