[Resource Topic] 2017/139: Revisiting AES Related-Key Differential Attacks with Constraint Programming

Welcome to the resource topic for 2017/139

Revisiting AES Related-Key Differential Attacks with Constraint Programming

Authors: David Gérault, Pascal Lafourcade, Marine Minier, Christine Solnon


The Advanced Encryption Standard (AES) is one of the most studied symmetric encryption schemes. During the last years, several attacks have been discovered in different adversary models. In this paper, we focus on related-key differential attacks, where the adversary may introduce differences in plaintext pairs and also in keys. We show that Constraint Programming (CP) can be used to model these attacks, and that it allows us to efficiently find all optimal related-key differential characteristics for AES-128, AES-192 and AES-256. In particular, we improve the best related-key differential for the whole AES-256 and give the best related-key differential on 10 rounds of AES-192, which is the differential trail with the longest path. Those results allow us to improve existing related-key distinguishers, basic related-key attacks and q-multicollisions on AES-256.

ePrint: https://eprint.iacr.org/2017/139

See all topics related to this paper.

Feel free to post resources that are related to this paper below.

Example resources include: implementations, explanation materials, talks, slides, links to previous discussions on other websites.

For more information, see the rules for Resource Topics .