Welcome to the resource topic for 2017/1059
Title:
CP-consensus: a Blockchain Protocol Based on Synchronous Timestamps of Compass Satellite
Authors: Lijing Zhou, Licheng Wang, Yiru Sun
Abstract:Bitcoin, the first decentralized cryptocurrency, achieves great success but also encounters many challenges. In this paper, we mainly focus on Bitcoin’s five challenges: low network synchronization; poor throughput; high information propagation delay; vulnerabilities to fork-based attacks and consumption of a large amount of computational power to maintain the blockchain. To address these challenges, we present the CP-consensus, a blockchain protocol based on synchronous timestamps of the Compass satellite. Firstly, CP-consensus provides a quasi-synchronous network for nodes. Specifically, nodes synchronously begin or end in each phase. Secondly, the block propagation delay is significantly reduced by adopting cache-nodes. Moreover, the block verification delay is significantly reduced since it is limited only by the size of block-header. Thirdly, CP-consensus has a high throughput with a larger block size since that the block size does not influence the consistency of CP-consensus. Fourthly, CP-consensus resists fork-based attacks and consumes a small amount of computational power. Finally, parameters setting and the security of CP-consensus are discussed.
ePrint: https://eprint.iacr.org/2017/1059
See all topics related to this paper.
Feel free to post resources that are related to this paper below.
Example resources include: implementations, explanation materials, talks, slides, links to previous discussions on other websites.
For more information, see the rules for Resource Topics .