Welcome to the resource topic for 2016/898
Title:
Physical Unclonable Functions based on Temperature Compensated Ring Oscillators
Authors: Sha Tao, Elena Dubrova
Abstract:Physical unclonable functions (PUFs) are promising hardware security primitives suitable for low-cost cryptographic applications.Ring oscillator (RO) PUF is a well-received silicon PUF solution due to its ease of implementation and entropy evaluation. However, the responses of RO-PUFs are susceptible to environmental changes, in particular, to temperature variations. Additionally, a conventional RO-PUF implementation is usually more power-hungry than other PUF alternatives. This paper explores circuit-level techniques to design low-power RO-PUFs with enhanced thermal stability. We introduce a power-efficient approach based on a phase/frequency detector (PFD) to perform pairwise comparisons of ROs. We also propose a temperature compensated bulk-controlled oscillator and investigate its feasibility and usage in PFD-based RO-PUFs. Evaluation results demonstrate that the proposed techniques can effectively reduce the thermally induced errors in PUF responses while imposing a very low power overhead.
ePrint: https://eprint.iacr.org/2016/898
See all topics related to this paper.
Feel free to post resources that are related to this paper below.
Example resources include: implementations, explanation materials, talks, slides, links to previous discussions on other websites.
For more information, see the rules for Resource Topics .