Welcome to the resource topic for 2016/887
Title:
A generalisation of Dillon’s APN permutation with the best known differential and nonlinear properties for all fields of size 2^{4k+2}
Authors: Anne Canteaut, Sébastien Duval, Léo Perrin
Abstract:The existence of Almost Perfect Nonlinear (APN) permutations operating on an even number of variables was a long-standing open problem, until an example with six variables was exhibited by Dillon et al. in~2009. However it is still unknown whether this example can be generalised to any even number of inputs. In a recent work, Perrin et al. described an infinite family of permutations, named butterflies, operating on (4k+2) variables and with differential uniformity at most 4, which contains the Dillon APN permutation. In this paper, we generalise this family, and we completely solve the two open problems raised by Perrin et al. Indeed we prove that all functions in this larger family have the best known nonlinearity. We also show that this family does not contain any APN permutation besides the Dillon permutation, implying that all other functions have differential uniformity exactly four.
ePrint: https://eprint.iacr.org/2016/887
See all topics related to this paper.
Feel free to post resources that are related to this paper below.
Example resources include: implementations, explanation materials, talks, slides, links to previous discussions on other websites.
For more information, see the rules for Resource Topics .