[Resource Topic] 2016/817: Secure Obfuscation in a Weak Multilinear Map Model

Welcome to the resource topic for 2016/817

Title:
Secure Obfuscation in a Weak Multilinear Map Model

Authors: Sanjam Garg, Eric Miles, Pratyay Mukherjee, Amit Sahai, Akshayaram Srinivasan, Mark Zhandry

Abstract:

All known candidate indistinguishibility obfuscation (iO) schemes rely on candidate multilinear maps. Until recently, the strongest proofs of security available for iO candidates were in a generic model that only allows “honest” use of the multilinear map. Most notably, in this model the zero-test procedure only reveals whether an encoded element is 0, and nothing more. However, this model is inadequate: there have been several attacks on multilinear maps that exploit extra information revealed by the zero-test procedure. In particular, Miles, Sahai and Zhandry [Crypto’16] recently gave a polynomial-time attack on several iO candidates when instantiated with the multilinear maps of Garg, Gentry, and Halevi [Eurocrypt’13], and also proposed a new “weak multilinear map model” that captures all known polynomial-time attacks on GGH13. In this work, we give a new iO candidate which can be seen as a small modification or generalization of the original candidate of Garg, Gentry, Halevi, Raykova, Sahai, and Waters [FOCS’13]. We prove its security in the weak multilinear map model, thus giving the first iO candidate that is provably secure against all known polynomial-time attacks on GGH13. The proof of security relies on a new assumption about the hardness of computing annihilating polynomials, and we show that this assumption is implied by the existence of pseudorandom functions in \text{NC}^1.

ePrint: https://eprint.iacr.org/2016/817

See all topics related to this paper.

Feel free to post resources that are related to this paper below.

Example resources include: implementations, explanation materials, talks, slides, links to previous discussions on other websites.

For more information, see the rules for Resource Topics .