Welcome to the resource topic for 2016/769
Title:
Low-temperature data remanence attacks against intrinsic SRAM PUFs
Authors: Nikolaos Athanasios Anagnostopoulos, Stefan Katzenbeisser, Markus Rosenstihl, André Schaller, Sebastian Gabmeyer, Tolga Arul
Abstract:In this paper, we present the first systematic investigation of data remanence effects on an intrinsic Static Random Access Memory Physical Unclonable Function (SRAM PUF) implemented on a commercial off-the-shelf (COTS) device in a temperature range between -110° C and -40° C. Although previous studies investigated data remanence in SRAMs only at temperatures above -50° C, our experimental results clearly indicate that the extended temperature region we examine has dramatic effects on the security of intrinsic SRAM PUFs. We propose a number of different attacks and experimentally verify that data remanence effects can be exploited successfully to attack intrinsic SRAM PUFs on a COTS device, where the (micro)processor and the SRAM reside on the same die. Our experimental attack writes a bit-string to memory and freezes the device. Due to data remanence effects the attacker-known bit-string remains in memory and is subsequently read out by the bootloader to generate the PUF response. In this way, the attacker is able to construct a forged secret key by manipulating the PUF response. Finally, we also discuss and assess potential countermeasures against the attacks we examine.
ePrint: https://eprint.iacr.org/2016/769
See all topics related to this paper.
Feel free to post resources that are related to this paper below.
Example resources include: implementations, explanation materials, talks, slides, links to previous discussions on other websites.
For more information, see the rules for Resource Topics .