[Resource Topic] 2016/645: FourQNEON: Faster Elliptic Curve Scalar Multiplications on ARM Processors

Welcome to the resource topic for 2016/645

FourQNEON: Faster Elliptic Curve Scalar Multiplications on ARM Processors

Authors: Patrick Longa


We present a high-speed, high-security implementation of the recently proposed elliptic curve FourQ (ASIACRYPT 2015) for 32-bit ARM processors with NEON support. Exploiting the versatile and compact arithmetic of this curve, we design a vectorized implementation that achieves high-performance across a large variety of ARM platforms. Our software is fully protected against timing and cache attacks, and showcases the impressive speed of FourQ when compared with other curve-based alternatives. For example, one single variable-base scalar multiplication is computed in about 235,000 Cortex-A8 cycles or 132,000 Cortex-A15 cycles which, compared to the results of the fastest genus 2 Kummer and Curve25519 implementations on the same platforms, offer speedups between 1.3x-1.7x and between 2.1x-2.4x, respectively. In comparison with the NIST standard curve K-283, we achieve speedups above 4x and 5.5x.

ePrint: https://eprint.iacr.org/2016/645

See all topics related to this paper.

Feel free to post resources that are related to this paper below.

Example resources include: implementations, explanation materials, talks, slides, links to previous discussions on other websites.

For more information, see the rules for Resource Topics .