Welcome to the resource topic for 2016/603
Title:
Koblitz curves over quadratic fields
Authors: Thomaz Oliveira, Julio López, Daniel Cervantes-Vázquez, Francisco Rodríguez-Henríquez
Abstract:In this work, we retake an old idea that Koblitz presented in his landmark paper, where he suggested the possibility of defining anomalous elliptic curves over the base field F4. We present a careful implementation of the base and quadratic field arithmetic required for computing the scalar multiplication operation in such curves. We also introduce two ordinary Koblitz-like elliptic curves defined over F4 that are equipped with efficient endomorphisms. To the best of our knowledge these endomorphisms have not been reported before. In order to achieve a fast reduction procedure, we adopted a redundant trinomial strategy that embeds elements of the field F4^m, with m a prime number, into a ring of higher order defined by an almost irreducible trinomial. We also present a number of techniques that allow us to take full advantage of the native vector instructions of high-end microprocessors. Our software library achieves the fastest timings reported for the computation of the timing-protected scalar multiplication on Koblitz curves, and competitive timings with respect to the speed records established recently in the computation of the scalar multiplication over binary and prime fields.
ePrint: https://eprint.iacr.org/2016/603
See all topics related to this paper.
Feel free to post resources that are related to this paper below.
Example resources include: implementations, explanation materials, talks, slides, links to previous discussions on other websites.
For more information, see the rules for Resource Topics .