[Resource Topic] 2016/561: Compactness vs Collusion Resistance in Functional Encryption

Welcome to the resource topic for 2016/561

Title:
Compactness vs Collusion Resistance in Functional Encryption

Authors: Baiyu Li, Daniele Micciancio

Abstract:

We present two general constructions that can be used to combine any two functional encryption (FE) schemes (supporting a bounded number of key queries) into a new functional encryption scheme supporting a larger number of key queries. By using these constructions iteratively, we transform any primitive FE scheme supporting a single functional key query (from a sufficiently general class of functions) and has certain weak compactness properties to a collusion-resistant FE scheme with the same or slightly weaker compactness properties. Together with previously known reductions, this shows that the compact, weakly compact, collusion-resistant, and weakly collusion-resistant versions of FE are all equivalent under polynomial time reductions. These are all FE variants known to imply the existence of indistinguishability obfuscation, and were previously thought to offer slightly different avenues toward the realization of obfuscation from general assumptions. Our results show that they are indeed all equivalent, improving our understanding of the minimal assumptions on functional encryption required to instantiate indistinguishability obfuscation.

ePrint: https://eprint.iacr.org/2016/561

See all topics related to this paper.

Feel free to post resources that are related to this paper below.

Example resources include: implementations, explanation materials, talks, slides, links to previous discussions on other websites.

For more information, see the rules for Resource Topics .