[Resource Topic] 2016/474: T-Proof: Secure Communication via Non-Algorithmic Randomization

Welcome to the resource topic for 2016/474

Title:
T-Proof: Secure Communication via Non-Algorithmic Randomization

Authors: Gideon Samid

Abstract:

shared random strings are either communicated or recreated algorithmically in “pseudo” mode, thereby exhibiting innate vulnerability. Proposing a secure protocol based on unshared randomized data, which therefore can be based on ‘white noise’ or other real-world, non algorithmic randomization. Prospective use of this T-Proof protocol includes proving possession of data to a party in possession of same data. The principle: Alice wishes to prove to Bob that she is in possession of secret data s, known also to Bob. They agree on a parsing algorithm, dependent on the contents of s, resulting in breaking s into t distinct, consecutive sub-strings (letters). Alice then uses unshared randomization procedure to effect a perfectly random transposition of the t substrings, thereby generating a transposed string s’. She communicates s’ to Bob. Bob verifies that s’ is a permutation of s based on his parsing of s to the same t substrings, and he is then persuaded that Alice is in possession of s. Because s’ was generated via a perfectly randomized transposition of s, a cryptanalyst in possession of s’ faces t! s- candidates, each with a probability of 1/t! (what’s more: the value of t, and the identity of the t sub-strings is unknown to the cryptanalyst). Brute force cryptanalysis is the fastest theoretical strategy. T-Proof can be played over s, mixed with some agreed upon nonce to defend against replay options. Unlike the competitive solution of hashing, T-Proof does not stand the risk of algorithmic shortcut. Its intractability is credibly appraised

ePrint: https://eprint.iacr.org/2016/474

See all topics related to this paper.

Feel free to post resources that are related to this paper below.

Example resources include: implementations, explanation materials, talks, slides, links to previous discussions on other websites.

For more information, see the rules for Resource Topics .