Welcome to the resource topic for 2016/276
Title:
Arithmetic coding and blinding countermeasures for lattice signatures
Authors: Markku-Juhani O. Saarinen
Abstract:We describe new arithmetic coding techniques and side-channel blinding countermeasures for lattice-based cryptography. Using these techniques, we develop a practical, compact, and more quantum-resistant variant of the BLISS Ideal Lattice Signature Scheme. We first show how the BLISS parameters and hash-based random oracle can be modified to be more secure against quantum pre-image attacks while optimizing signature size. Arithmetic Coding offers an information theoretically optimal compression for stationary and memoryless sources, such as the discrete Gaussian distributions often present in lattice-based cryptography. We show that this technique gives better signature sizes than the previously proposed advanced Huffman-based signature compressors. We further demonstrate that arithmetic decoding from an uniform source to target distribution is also an optimal non-uniform sampling method in the sense that a minimal amount of true random bits is required. Performance of this new Binary Arithmetic Coding sampler is comparable to other practical samplers. The same code tables, or circuitry can be utilized for both tasks, eliminating the need for separate sampling and compression components. We then describe simple randomized blinding techniques that can be applied to anti-cyclic polynomial multiplication to mask timing- and power consumption side-channels in ring arithmetic. We further show that the Gaussian sampling process can also be blinded by a split-and-permute techniques as an effective countermeasure against side-channel attacks.
ePrint: https://eprint.iacr.org/2016/276
See all topics related to this paper.
Feel free to post resources that are related to this paper below.
Example resources include: implementations, explanation materials, talks, slides, links to previous discussions on other websites.
For more information, see the rules for Resource Topics .