[Resource Topic] 2016/250: Fixed Point Arithmetic in SHE Scheme

Welcome to the resource topic for 2016/250

Fixed Point Arithmetic in SHE Scheme

Authors: A. Costache, N. P. Smart, S. Vivek, A. Waller


The purpose of this paper is to investigate fixed-point arithmetic in ring-based Somewhat Homomorphic Encryption (SHE) schemes. We provide three main contributions: firstly, we investigate the representation of fixed-point numbers. We analyse the two representations from Dowlin et al, representing a fixed-point number as a large integer (encoded as a scaled polynomial) versus a polynomial-based fractional representation. We show that these two are, in fact, isomorphic by presenting an explicit isomorphism between the two that enables us to map the parameters from one representation to another. Secondly, given a computation and a bound on the fixed-point numbers used as inputs and scalars within the computation, we achieve a way of producing lower bounds on the plaintext modulus p and the degree of the ring d needed to support complex homomorphic operations. Finally, as an application of these bounds, we investigate homomorphic image processing.

ePrint: https://eprint.iacr.org/2016/250

See all topics related to this paper.

Feel free to post resources that are related to this paper below.

Example resources include: implementations, explanation materials, talks, slides, links to previous discussions on other websites.

For more information, see the rules for Resource Topics .