Welcome to the resource topic for 2016/242
Title:
Attribute-Based Signatures for Circuits from Bilinear Map
Authors: Yusuke Sakai, Nuttapong Attrapadung, Goichiro Hanaoka
Abstract:In attribute-based signatures, each signer receives a signing key from the authority, which is associated with the signer’s attribute, and using the signing key, the signer can issue a signature on any message under a predicate, if his attribute satisfies the predicate. One of the ultimate goals in this area is to support a wide class of predicates, such as the class of \emph{arbitrary circuits}, with \emph{practical efficiency} from \emph{a simple assumption}, since these three aspects determine the usefulness of the scheme. We present an attribute-based signature scheme which allows us to use an arbitrary circuit as the predicate with practical efficiency from the symmetric external Diffie-Hellman assumption. We achieve this by combining the efficiency of Groth-Sahai proofs, which allow us to prove algebraic equations efficiently, and the expressiveness of Groth-Ostrovsky-Sahai proofs, which allow us to prove any NP relation via circuit satisfiability.
ePrint: https://eprint.iacr.org/2016/242
See all topics related to this paper.
Feel free to post resources that are related to this paper below.
Example resources include: implementations, explanation materials, talks, slides, links to previous discussions on other websites.
For more information, see the rules for Resource Topics .