[Resource Topic] 2016/1085: Digital Signatures from Symmetric-Key Primitives

Welcome to the resource topic for 2016/1085

Digital Signatures from Symmetric-Key Primitives

Authors: David Derler, Claudio Orlandi, Sebastian Ramacher, Christian Rechberger, Daniel Slamanig


We propose practically efficient signature schemes which feature several attractive properties: (a) they only rely on the security of symmetric-key primitives (block ciphers, hash functions), and are therefore a viable candidate for post-quantum security, (b) they have extremely small signing keys, essentially the smallest possible, and, (c) they are highly parametrizable. For this result we take advantage of advances in two very distinct areas of cryptography. The first is the area of primitives in symmetric cryptography, where recent developments led to designs which exhibit an especially low number of multiplications. The second is the area of zero-knowledge proof systems, where significant progress for efficiently proving statements over general circuits was recently made. We follow two different directions, one of them yielding the first practical instantiation of a design paradigm due to Bellare and Goldwasser without relying on structured hardness assumptions. For both our schemes we explore the whole design spectrum to obtain optimal parameter choices for different settings. Within limits, in all cases our schemes allow to trade-off computational effort with signature sizes. We also demonstrate that our schemes are parallelizable to the extent that they can practically take advantage of several cores on a CPU.

ePrint: https://eprint.iacr.org/2016/1085

See all topics related to this paper.

Feel free to post resources that are related to this paper below.

Example resources include: implementations, explanation materials, talks, slides, links to previous discussions on other websites.

For more information, see the rules for Resource Topics .