[Resource Topic] 2015/565: FourQ: four-dimensional decompositions on a Q-curve over the Mersenne prime

Welcome to the resource topic for 2015/565

Title:
FourQ: four-dimensional decompositions on a Q-curve over the Mersenne prime

Authors: Craig Costello, Patrick Longa

Abstract:

We introduce FourQ, a high-security, high-performance elliptic curve that targets the 128-bit security level. At the highest arithmetic level, cryptographic scalar multiplications on FourQ can use a four-dimensional Gallant-Lambert-Vanstone decomposition to minimize the total number of elliptic curve group operations. At the group arithmetic level, FourQ admits the use of extended twisted Edwards coordinates and can therefore exploit the fastest known elliptic curve addition formulas over large prime characteristic fields. Finally, at the finite field level, arithmetic is performed modulo the extremely fast Mersenne prime p=2^{127}-1. We show that this powerful combination facilitates scalar multiplications that are significantly faster than all prior works. On Intel’s Broadwell, Haswell, Ivy Bridge and Sandy Bridge architectures, our software computes a variable-base scalar multiplication in 50,000, 56,000, 69,000 cycles and 72,000 cycles, respectively; and, on the same platforms, our software computes a Diffie-Hellman shared secret in 80,000, 88,000, 104,000 cycles and 112,000 cycles, respectively. These results show that, in practice, FourQ is around four to five times faster than the original NIST P-256 curve and between two and three times faster than curves that are currently under consideration as NIST alternatives, such as Curve25519.

ePrint: https://eprint.iacr.org/2015/565

See all topics related to this paper.

Feel free to post resources that are related to this paper below.

Example resources include: implementations, explanation materials, talks, slides, links to previous discussions on other websites.

For more information, see the rules for Resource Topics .