Welcome to the resource topic for 2015/449
Title:
On Constructions of a Sort of MDS Block Diffusion Matrices for Block Ciphers and Hash Functions
Authors: Ruoxin Zhao, Rui Zhang, Yongqiang Li, Baofeng Wu
Abstract:Many modern block ciphers use maximum distance separate (MDS) matrices as their diffusion layers. In this paper, we propose a new method to verify a sort of MDS diffusion block matrices whose blocks are all polynomials in a certain primitive block over the finite field \mathbb F_2. And then we discover a new kind of transformations that can retain MDS property of diffusion matrices and generate a series of new MDS matrices from a given one. Moreover, we get an equivalence relation from this kind of transformation. And MDS property is an invariant with respect to this equivalence relation which can greatly reduce the amount of computation when we search for MDS matrices. The minimal polynomials of matrices play an important role in our strategy. To avoid being too theoretical, we list a series of MDS diffusion matrices obtained from our method for some specific parameters. Furthermore, we talk about MDS recursive diffusion layers with our method and extend the corresponding work of M. Sajadieh et al. published on FSE 2012 and the work of S. Wu published on SAC 2012.
ePrint: https://eprint.iacr.org/2015/449
See all topics related to this paper.
Feel free to post resources that are related to this paper below.
Example resources include: implementations, explanation materials, talks, slides, links to previous discussions on other websites.
For more information, see the rules for Resource Topics .