[Resource Topic] 2015/435: On the (Fast) Algebraic Immunity of Boolean Power Functions

Welcome to the resource topic for 2015/435

Title:
On the (Fast) Algebraic Immunity of Boolean Power Functions

Authors: Yusong Du, Baodian Wei, Fangguo Zhang, Huang Zhang

Abstract:

The (fast) algebraic immunity, including (standard) algebraic immunity and the resistance against fast algebraic attacks, has been considered as an important cryptographic property for Boolean functions used in stream ciphers. This paper is on the determination of the (fast) algebraic immunity of a special class of Boolean functions, called Boolean power functions. An n-variable Boolean power function f can be represented as a monomial trace function over finite field GF(2^n). To determine the (fast) algebraic immunity of Boolean power functions one may need the arithmetic in GF(2^n), which may be not computationally efficient compared with the operations over GF(2). We provide two sufficient conditions for Boolean power functions such that their immunities can determined only by the computations in GF(2). We show that Niho functions and a number of odd variables Kasami functions can satisfy the conditions.

ePrint: https://eprint.iacr.org/2015/435

See all topics related to this paper.

Feel free to post resources that are related to this paper below.

Example resources include: implementations, explanation materials, talks, slides, links to previous discussions on other websites.

For more information, see the rules for Resource Topics .