[Resource Topic] 2015/378: PAC Learning of Arbiter PUFs

Welcome to the resource topic for 2015/378

Title:
PAC Learning of Arbiter PUFs

Authors: Fatemeh Ganji, Shahin Tajik, Jean-Pierre Seifert

Abstract:

The general concept of Physically Unclonable Functions (PUFs) has been nowadays widely ac cepted and adopted to meet the requirements of secure identification and key generation/storage for cryptographic ciphers. However, shattered by different attacks, e.g., modeling attacks, it has been proved that the promised security features of arbiter PUFs, including unclonability and unpredictability, are not supported unconditionally. However, so far the success of existing modeling attacks relies on pure trial and error estimates. This means that neither the probability of obtaining a useful model (confidence), nor the sufficient number of CRPs, nor the probability of correct prediction (accuracy) is guaranteed. To address these issues, this work presents a Probably Approximately Correct (PAC) learning algorithm. Based on a crucial discretization process, we are able to define a Deterministic Finite Automaton (of polynomial size), which exactly accepts the regular language corresponding to the challenges mapped by the given PUF to one responses.

ePrint: https://eprint.iacr.org/2015/378

See all topics related to this paper.

Feel free to post resources that are related to this paper below.

Example resources include: implementations, explanation materials, talks, slides, links to previous discussions on other websites.

For more information, see the rules for Resource Topics .