[Resource Topic] 2015/266: GRECS: Graph Encryption for Approximate Shortest Distance Queries

Welcome to the resource topic for 2015/266

Title:
GRECS: Graph Encryption for Approximate Shortest Distance Queries

Authors: Xianrui Meng, Seny Kamara, Kobbi Nissim, George Kollios

Abstract:

We propose graph encryption schemes that efficiently support approximate shortest distance queries on large-scale encrypted graphs. Shortest distance queries are one of the most fundamental graph operations and have a wide range of applications. Using such graph encryption schemes, a client can outsource large-scale privacy-sensitive graphs to an untrusted server without losing the ability to query it. Other applications include encrypted graph databases and controlled disclosure systems. We propose GRECS (stands for GRaph EnCryption for approximate Shortest distance queries) which includes three oracle encryption schemes that are provably secure against any semi-honest server. Our first construction makes use of only symmetric-key operations, resulting in a computationally-efficient construction. Our second scheme makes use of somewhat-homomorphic encryption and is less computationally-efficient but achieves optimal communication complexity (i.e. uses a minimal amount of bandwidth). Finally, our third scheme is both computationally-efficient and achieves optimal communication complexity at the cost of a small amount of additional leakage. We implemented and evaluated the efficiency of our constructions experimentally. The experiments demonstrate that our schemes are efficient and can be applied to graphs that scale up to 1.6 million nodes and 11 million edges.

ePrint: https://eprint.iacr.org/2015/266

See all topics related to this paper.

Feel free to post resources that are related to this paper below.

Example resources include: implementations, explanation materials, talks, slides, links to previous discussions on other websites.

For more information, see the rules for Resource Topics .