[Resource Topic] 2015/152: Inverting the Final exponentiation of Tate pairings on ordinary elliptic curves using faults

Welcome to the resource topic for 2015/152

Title:
Inverting the Final exponentiation of Tate pairings on ordinary elliptic curves using faults

Authors: Ronan Lashermes, Jacques Fournier, Louis Goubin

Abstract:

The calculation of the Tate pairing on ordinary curves involves two major steps: the Miller Loop (ML) followed by the Final Exponentiation (FE). The first step for achieving a full pairing inversion would be to invert this FE, which in itself is a mathematically difficult problem. To our best knowledge, most fault attack schemes proposed against pairing algorithms have mainly focussed on the ML. They solved, if at all, the inversion of the FE in some special `easy’ cases or even showed that the complexity of the FE is an intrinsic countermeasure against a successful full fault attack on the Tate pairing. In this paper, we present a fault attack on the FE whereby the inversion of the final exponentiation becomes feasible using 3 independent faults.

ePrint: https://eprint.iacr.org/2015/152

See all topics related to this paper.

Feel free to post resources that are related to this paper below.

Example resources include: implementations, explanation materials, talks, slides, links to previous discussions on other websites.

For more information, see the rules for Resource Topics .