Welcome to the resource topic for 2015/1179
Title:
A construction of 3-dimensional lattice sieve for number field sieve over F_{p^n}
Authors: Kenichiro Hayasaka, Kazumaro Aoki, Tetsutaro Kobayashi, Tsuyoshi Takagi
Abstract:The security of pairing-based cryptography is based on the hardness of solving the discrete logarithm problem (DLP) over extension field F_{p^n} of characteristic p and degree n. Joux et al. proposed an asymptotically fastest algorithm for solving DLP over F_{p^n} (JLSV06-NFS) as the extension of the number field sieve over prime field F p (JL03-NFS). The lattice sieve is often used for a large-scaled experiment of solving DLP over F_p by the number field sieve. Franke and Kleinjung proposed a 2-dimensional lattice sieve which efficiently enumerates all the points in a given sieve region of the lattice. However, we have to consider a sieve region of more than 2 dimensions in the lattice sieve of JLSV06-NFS. In this paper, we extend the Franke-Kleinjung method to 3-dimensional sieve region. We construct an appropriate basis using the Hermite normal form, which can enumerate the points in a given sieve region of the 3-dimensional lattice. From our experiment on F{p^{12}} of 303 bits, we are able to enumerate more than 90% of the points in a sieve region in the lattice generated by special-q. Moreover, we implement the number field sieve using the proposed 3-dimensional lattice sieve. Our implementation of the JLSV06 over F_{p^6} of 240 bits is about as efficient as that of the current record over F_{p^6} using 3-dimensional line sieve by Zajac.
ePrint: https://eprint.iacr.org/2015/1179
See all topics related to this paper.
Feel free to post resources that are related to this paper below.
Example resources include: implementations, explanation materials, talks, slides, links to previous discussions on other websites.
For more information, see the rules for Resource Topics .