[Resource Topic] 2015/1057: The Complexity of Computing the Optimal Composition of Differential Privacy

Welcome to the resource topic for 2015/1057

Title:
The Complexity of Computing the Optimal Composition of Differential Privacy

Authors: Jack Murtagh, Salil Vadhan

Abstract:

In the study of differential privacy, composition theorems (starting with the original paper of Dwork, McSherry, Nissim, and Smith (TCC’06)) bound the degradation of privacy when composing several differentially private algorithms. Kairouz, Oh, and Viswanath (ICML’15) showed how to compute the optimal bound for composing k arbitrary (epsilon,delta)-differentially private algorithms. We characterize the optimal composition for the more general case of k arbitrary (epsilon_1, delta_1),…,(epsilon_k, delta_k)-differentially private algorithms where the privacy parameters may differ for each algorithm in the composition. We show that computing the optimal composition in general is #P-complete. Since computing optimal composition exactly is infeasible (unless FP=#P), we give an approximation algorithm that computes the composition to arbitrary accuracy in polynomial time. The algorithm is a modification of Dyer’s dynamic programming approach to approximately counting solutions to knapsack problems (STOC’03).

ePrint: https://eprint.iacr.org/2015/1057

See all topics related to this paper.

Feel free to post resources that are related to this paper below.

Example resources include: implementations, explanation materials, talks, slides, links to previous discussions on other websites.

For more information, see the rules for Resource Topics .