Welcome to the resource topic for 2015/047
Title:
Linearly Homomorphic Encryption from DDH
Authors: Guilhem Castagnos, Fabien Laguillaumie
Abstract:We design a linearly homomorphic encryption scheme whose security relies on the hardness of the decisional Diffie-Hellman problem. Our approach requires some special features of the underlying group. In particular, its order is unknown and it contains a subgroup in which the discrete logarithm problem is tractable. Therefore, our instantiation holds in the class group of a non maximal order of an imaginary quadratic field. Its algebraic structure makes it possible to obtain such a linearly homomorphic scheme whose message space is the whole set of integers modulo a prime p and which supports an unbounded number of additions modulo p from the ciphertexts. A notable difference with previous works is that, for the first time, the security does not depend on the hardness of the factorization of integers. As a consequence, under some conditions, the prime p can be scaled to fit the application needs.
ePrint: https://eprint.iacr.org/2015/047
See all topics related to this paper.
Feel free to post resources that are related to this paper below.
Example resources include: implementations, explanation materials, talks, slides, links to previous discussions on other websites.
For more information, see the rules for Resource Topics .